Correction to "Cyclic Division Algebras", by Louis Halle Rowen, Israel Journal of Mathematics, Voi. 41, No. 3, 1982, pp. 213--234.

Tignol has spotted two errors in the proof of [1, Theorem 6]. The proof given below requires a more careful analysis, based on the original idea but taking into account that the number of roots of unity available at each stage changes.

Fix any power f of p, where $f \geq p$ for p odd and $f \geq 4$ for $p = 2$. Take $\hat{K} = Q(\zeta_t)(\mu_1,\dots,\mu_u)$ where $u = \frac{fn}{p}$ and let K be the fixed subfield under σ^n (where σ permutes the μ_i cyclically). Then $R = (K, \sigma, \zeta_i)$ is a division algebra by Brauer's Theorem, which we claim has exponent p . (Indeed we argue as in Example 3. Let K_1 be the fixed subfield of K under $\sigma^{n/p}$. Then $\sigma^{n/p}(x) = \zeta_x$ for some x in \hat{K} so $\sigma(x) = a_1x$ for some a_1 in K_1 ; hence $\zeta_f = \sigma^{n/p-1}(a_1) \cdots a_1$ and $\zeta_i^p = N(a_1)$ proving $\exp(R) \leq p$; equality holds since $\exp(R) \neq 1$.)

Form R' as in §1 by taking $m = p = q$. Then R' has degree n and exponent p by [1, Remark 6], and this is the example to be used for [1, Theorem 6] and [1, Theorem 8. (Note for $f = p$ we have $u = n$, which provided the example originally considered.)

PROOF OF [1, THEOREM 6]. Suppose R' is a crossed product with respect to the split Galois group of exponent p . By Example 2, R' has a commutative p -central set of order n. Thus, by Remark 7, R has a commutative p -central set S of order n all of whose elements are in $R_0k^i z^j$ for various $i, j > p$, where we recall $K = K_0(k)$, and R_0 is the subalgebra of R generated by K_0 and z^p .

We need some more notation. For any given d let $c = n/p^{d+1}$ and let K_d denote the fixed subfield of K under σ^c ; let R_d be the subalgebra of R generated by K_d and z^p . Then $z^c \in Z(R_d)$ and is thus identified in R_d as a primitive p^{d+1} -root of ζ_f .

Given a commutative *p*-central set S_{d-1} of elements $s_t = r_i z^{i_t}$ for suitable r_t in R_{d-1} , let $\zeta = z^{pc}$, a primitive p^d -root of ζ_i . Put $P = Q(\zeta_i)$ and $H = P[\mu_1, \dots, \mu_u]$. Writing $r_i = \sum_{i=0}^{c-1} x_{i,i} z^{pi}$ for suitable $x_{i,i}$ in $K_{d-1}(\zeta)$ and multiplying through by a suitable element of F we may assume all $x_{i,t} \in H$. Put $V = \sum_{j=1}^{u} P\mu_j$ and write $V = \bigoplus_{i=1}^{s} V_i$, a finite direct sum of e irreducible σ -submodules. For each $\alpha = (\alpha_1,\dots,\alpha_n)$ write $V_{\alpha} = \prod_{i=1}^{e} V_i^{\alpha_i}$. Note the V_{α} are homogeneous in total degree in the μ_i , so an easy dimension counting argument shows $H = \bigoplus_{\alpha} V_{\alpha}$ is graded as σ -module, and we order the V_{α} according to the lexicographic order of α . Let V_{α} , denote the leading component of all $x_{i,j}$ appearing in r_i , let $x'_{i,j}$ denote the V_{α} -component of x_{i} , (possibly 0), let $r_i = \sum_{i=0}^{c-1} x_{i}^i z^{pi}$ and $s'_i = r'_i z^{i}$. Then the s'_i form a new commutative p-central set S'_{d-1} of which we claim

278 L.H. ROWEN Isr. J. Math.

 $|S_{d-1}|/p$ elements have r'_i in R_d ; this subset of $|S_{d-1}|/p$ elements from S'_{d-1} will be denoted as S_d . (Note that each r'_i is fixed by σ^p , where σ acts naturally on H by setting $\sigma(\zeta) = \zeta$.)

The passage from S_{d-1} to S_d will be called *Brauer's degree reduction argument*, based on Jacobson's exposition of Brauer, and the above claim can be proved by proving the following stronger assertion:

 $z^{c}r'z^{-c} = \zeta(t)r'$, where $\zeta(t)$ is a suitable pth-root of 1.

To see this, first note σ^c induces a transformation on V_i whose order divides p^{d+1} , so $\sigma^{c}(w_i) = \zeta^{(i)}w_i$ for some nonzero $w_i \in V_i$ and some power $\zeta^{(i)}$ of ζ . The characteristic subspace of $\zeta^{(i)}$ under σ^c is a nonzero σ -submodule of V_i (since $\sigma^c(w) = \zeta^{(i)}w$ implies $\sigma^c(\sigma w) = \sigma(\sigma^c w) = \sigma(\zeta^{(i)}w) = \zeta^{(i)}\sigma(w)$ and is thus all of V_i , i.e. $\sigma^c(w) = \zeta^{(i)}w$ for all w in V_i . Hence for each $\alpha = (\alpha_1, \alpha_2, \dots, \alpha_n)$ there is some power $\zeta^{(\alpha)}$ of ζ with $\sigma^c(w) = \zeta^{(\alpha)}w$ for each w in V_α . Writing $\zeta(t)$ for $\zeta^{(\alpha)}$ note that $\zeta(t)^p = 1$ (since $\sigma^{pc}(x_{i,t}) = x_{i,t}$ by hypothesis), and

$$
z^{c}r'_{i}z^{-c}=z^{c}\left(\sum_{i=0}^{c-1}x'_{i,i}z^{pi}\right)z^{-c}=\sum_{i=0}^{c-1}z^{c}x'_{i,i}z^{-c}z^{pi}=\sum \zeta(t)x'_{i,i}z^{pi}=\zeta(t)r'_{i},
$$

proving the claim.

For example, we see from the first paragraph that we could take $|S_0| = n/p$ yielding $|S_d| = c$ for each d. We need some more observations about this reduction argument.

REMARK. If $s \in S_{d-1}$ and $s' \in Fz^{n/p}$ then $s \in Fz^{n/p}$. (Indeed $s = (\alpha z^{n/p} + r)z^{n/p}$ where $\alpha \in H \cap F$ is the leading component, $r \in H \cap R_{d-1}$, and $j < p$. Hence $j = 0$; since r commutes with $z^{n/p}$ we get $s^p = \alpha^p z^n + p \alpha^{p-1} z^{(p-1)n/p} r + \cdots \in F$. Hence the leading component of $p\alpha^{p-1}z^{(p-1)n/p}r$ is in F, so the leading component of r is in $Fz^{n/p}$; working inductively yields $r \in Fz^{n/p}$.)

REMARK. If $s \in S_{d-1}$ and $s' \in Fk''z^{in/p}$ where k" is any element of K such that $\sigma(k'') = \zeta_p k''$, then $s \in Fk''z^{in/p}$. (Indeed k'' commutes with z^p so the argument of the previous remark applies.)

Iterating each remark over all d, we may assume that if $z^{n/p}$ or $k''z^{in/p}$ appears in any S_d then it already appears in S_0 (and thus in *S*). For the remainder of the *proof* fix $d = \log_b n - 2$, i.e., $p^{d+2} = n$. Then $c = p$ and $R_d = K_d(z^p)$ is a field in which z^p is identified with ζ_u ; hence R_d cannot have a p-central set of more than p^2 elements. Also $K_d = F(k_d)$ for suitable k_d where $\sigma(k_d) = \zeta_p k_d$, and R_{d-2} is a division ring of degree p^2 whose center contains z^{p^3} (u/p²-root of 1).

CLAIM 1. If $s \in S_{d-2} \cap R_{d-2}$ then $s' \in R_{d-1}$ (notation as before); in particular if $S_{d-2} \subset R_{d-2}$ then $S_{d-2} \subset R_{d-1}$ and we may take S_{d-1} to be all of S_{d-2} .

PROOF OF CLAIM 1. Otherwise $\sigma^{p^2}(s') = \zeta_p s'$ for some p-th root ζ_p of 1. Hence z^{p^2} and s' generate a cyclic central subalgebra of R_{d-2} having degree p, whose centralizer thus also has degree p. Conclude as in Claim 1 of the original proof.

REMARK. $S_d \subset R_d$. Indeed otherwise we have rz^i in S_d with $r \in R_d$ and $j \neq 0$. Then $r\sigma(r) \cdots \sigma^{p-1}(r)z^{pi} \in F$ contrary to Proposition 6, where the notation L_1 , L , and h of Proposition 6 are replaced here respectively by $R_d =$ $K_d(z^p) = K_d(\zeta_u)$, K_d and r (i.e. $e = u$ in Proposition 6).

CLAIM 2. We may assume S contains $z^{n/p}$ and k_d .

PROOF OF CLAIM 2. We showed $|S_d| \geq p$ and $S_d \subseteq R_d \approx K_d(\zeta_u)$, so we may assume S_d contains $z^{n/p}$ or $k_d z^{in/p}$ for some i. By the above remarks we may assume S contains one of these elements; we need to prove S contains both of them or, equivalently, $|S_d| = p^2$.

If $z^{n/p} \in S$ then each s, in S commutes with $z^{n/p}$ and thus has suitable form $r_1z^{i_1}$ for r_1 in R_0 , i.e., $|S_0| = n$; then the Brauer reduction argument yields $|S_d|=p^2$ and we are done. If $k_d z^{in/p} \in S$ then each $s_i \in R_0(kz^i)^{i_j}$ for some i_i , so we could find $S_0 \subseteq R_0$. Then $S_{d-2} \subset R_{d-2}$ so by Claim 1 we may take $|S_{d-1}| = p^3$ and so $|S_a| = p^2$, proving Claim 2.

But now we know S is centralized by $z^{(n/p)}$ and k_d , implying $S \subseteq R_0$. Hence we may take $S_0 = S$ and $|S_0| = n$, so $|S_{d-2}| = p^4$ and $S_{d-2} \subset R_{d-2}$, implying $|S_{d-1}| = p^4$ by Claim 1 and $|S_a| = p^3$, contrary to $S_a \subset R_a$. Q.E.D.

Added in proof

Unfortunately this argument opens up another gap, namely, letting T_d denote the subalgebra of R generated by K_d and z (so that R_d is the centralizer of z^p in T_a) and $F_a = Z(T_a) = F(z^c)$, we do not necessarily have the s', independent over F_a (although each $(s')^p \in Z(R_a)$). To assure this we must make a further modification. Write $S_{d-1} = s_1, \dots, s_u$ and $K_{d-1} = K_d (k_{d-1})$ with $\sigma^c (k_{d-1}) = \zeta_p k_{d-1}$. Taking leading components (denoted as ') we may assume k_{d-1} is homogeneous. We note the following for all t :

(i) If $s_i \notin F_{d-1}$ then $s'_i \notin F_{d-1}$ (for if $s_i r = \zeta_p rs_i$ then $s'_i r' \neq r's'_i$).

(ii) $(s')^p \in F_{d-1}$ (for $s^p_1 k_{d-1} = k_{d-1} s^p$, implying $(s')^p k_{d-1} = k_{d-1} (s')^p$).

(iii) If $s_i \in F_m$ for any $m \ge d$ then $s_i \in F_{d-1}z^{c_i}$ for some j (since $s_i^p \in F_{d-1}$ and F_m is cyclic over F_{d-1}). Likewise by (ii), if $s' \in F_m$ then $s' \in F_{d-1}z^{d'}$ for some j.

(iv) If $s'_i \in F_{d+1}$ then $s_i \in F_d$. Indeed $s'_i = \alpha z^{i}$ for some $\alpha \in F_{d-1}$ by (iii), so $s_t = \alpha z^{cj} + r$ for $r \in H \cap R_{d-1}$ of lower order. As in the Remark above, we get $r \in F_{d-1} z^{q}$ so $s_i \in F_{d-1} z^{q} \subset F_d$.

(v) Analogously, if $s'_i \in F_{d+1}k''$ where $\sigma k'' = \zeta_k k''$ then $s_i \in F_d k''$.

Now as in the argument in the original correction $z^{n/p} \in S$. Thus $|S_0| = n$ so we can replace S_0 by a set of n/p elements which are $F(z^{n/p})$ -independent. *Now* we finally can claim S_d is p-central in T_d . This is clear by induction unless say F_d (s₁') = F_d (s₂'), so $s_2' \in F_d s_1''$ for some *j* implying $s_1's_2^{-1} \in F_d$ by (iv) which implies S_0 has two elements x_1, x_2 with $x_1x_2^{-1} \in F_0 = F(z^{n/p})$, contrary to assumption.

REFERENCE

1. L. H. Rowen, *Cyclic division algebras,* Isr. J. Math. 41 (1982), 213-234.

DEPARTMENT OF MATHEMATICS BAR ILAN UNIVERSITY RAMAT GAN, ISRAEL